Hydropower Licensing in the Face of Environmental Uncertainty

Ryan McManamay Bob Deibel FLOW 2018 April 24, 2018

Precipitation Changes within the past two decades

 Precipitation changes 1991-2012 compared to 1901-1960 average

National Climate Assessment

Peterson et al. 2013

Projected Precipitation Changes

- 2070-2099 compared to 1971-2000
- Under dramatic reductions in emissions, precipitation will increase in winter and spring over most of US; however, SW still experience declines
- Under continued emission increases, the winter and spring patterns become more exaggerated. Additionally declines in summer and fall precipitation will occur over large regions of the US

Sources: NOAA NCDC / CICS-NC 3 Presentation name

Projected Precipitation Changes

- 2041-2070 compared to 1971-2000
- A2 scenario
- Major losses in snowpack
- Significant reductions in runoff in CA
- Reductions in soil moisture

A2 2041-2070

Current Declines in Soil Moisture

Seasonal Surface Soil Moisture Trends

Changes in seasonal surface soil moisture per year from 1988 to 2010 (W. Dorigo.)

Projected Changes in Runoff

Changes in Lake Stratification and Temperature

- In response to increase air and ٠ surface water temperatures, length of the season in which differences in lake temperatures with depth cause stratification is increasing in many lakes.
- In Lake Tahoe, long water-residence ٠ times, warming air and water temperatures have caused declines in near-surface density, leading to longer stratification seasons, decreasing deep lake mixing, reducing oxygen levels, and causing impacts to many species and numerous aspects of aquatic ecosytems.
- In Lake Superior, stratification season • is lengthening and annual ice-covered area is declining

1990

Year

2000

Observed Changes in Lake Stratification Season and Ice Covered Area

1.UC Davis Tahoe Environmental Research Center, 2012: Tahoe: State of the Lake Report. 78 pp. 2. Wang, J., X. Bai, H. Hu, A. Clites, M. Colton, and B. Lofgren, 2012: Temporal and spatial variability of Great Lakes ice cover, 1973-2010. Journal of Climate, 25, 1318-1329,

1980

0.2 0.1 e 0

1970

2010

Summary of Projected Changes

- Changes in runoff vary across the US, vary by season
- Generally, with warmer temperatures, the amount of runoff generated by a given amount of precipitation will decline
- Shifts in snowmelt and precipitation types
- Droughts intensity
 - Runoff and streamflow decline in SW and SE
 - Summer drought duration and magnitude are expected to increase in most of US
- Flood frequency and magnitude increases
 - Heavy rainfall will increase and coincide with increasing impervious surfaces
- Elevated water temperatures and lower DO levels in summer

SECURE Water Act Section 9505 Assessment Effects of Climate Change on Federal Hydropower

- Shih-Chieh Kao (PI, ORNL)
- kaos@ornl.gov
- Effects and risk of global climate change to water supplies used for hydropower generation

132 Power Plants in 18 Study Areas

Region	Hydropower plants	Installed capacity (GW)	Number of wholesale customers	Average Annual Generation (billion kWh)	Percent of electricity sales	Average Annual Revenue (million)
Bonneville	31	20.5	276	77.3	35	\$2,306
Western	55	10.2	682	29.7	4	\$973
Southwestern	24	2.2	102	5.8	1.4	\$164
Southeastern	22	4.1	489	7.8	1.0	\$242
TOTAL	132	37.0	1,549	120.6	n/a	\$3,685

18 study areas defined by watershed boundary and power system.

Assessment Framework

Shih-Chieh Kao kaos@ornl.gov

10 sets of CMIP5/RegCM4/VIC hydro-climate projections were used in this study.

ORNL High-resolution CMIP5 Ensemble Projections

Shih-Chieh Kao kaos@ornl.gov

- 11 CMIP5 GCMs
- Baseline period
 1966–2005
- Future (RCP8.5)
 2011–2050
- Dynamically downscaled by RegCM4 to 18km
- Statistical correction (quantile mapping) to 4km
- ~15 Million computation hours, 200 Terabytes storage

Ashfaq, M., D. Rastogi, R. Mei, S.-C. Kao, S. Gangrade, B. S. Naz, and D. Touma (2016), High-resolution Ensemble Projections of Near-term Regional Climate over the Continental United States, *J. Geophys. Res.-Atmos.*, 121, 9943-9963, doi:10.1002/2016JD025285.

CAK RIDGE

Projected Change by 10 ORNL simulations

Shih-Chieh Kao kaos@ornl.gov

Temperature

Precipitation

Storage

Evapotranspiration

Runoff

Generation

Bonneville – Area 1

Kao et al. 2016. ORNL/SR-2015/357

Impacts on Seasonal Hydropower Generation

25

2

2.5

kaos@ornl.gov

- In general, more hydropower generation during winter and spring while less during summer and fall.
- Earlier snowmelt and change of runoff seasonality are the main factors affecting future hydropower generation.
- The relatively larger reservoir storage of federal hydropower fleet may help buffer the increasing future runoff variability.
- The site-specific challenges are to be better understood in the future assessment.

Kao et al. 2016. ORNL/SR-2015/357

